

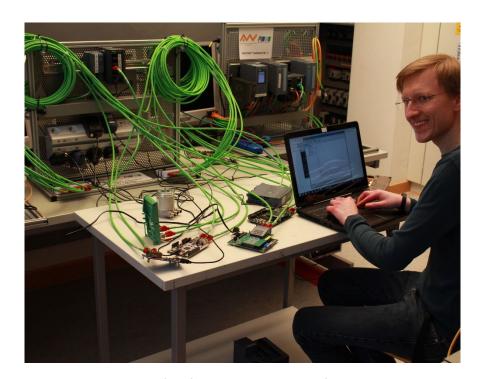
Certification and Development with the Automated Realtime Tester

Benedikt Etzold, M.Sc.

OTH Amberg-Weiden – University of Applied Sciences aia – Automations Institute Amberg (PICC)

Agenda

- 1 Automated RT-Tester Basics
- 2 What to expect from a Testcase?
- 3 Demo

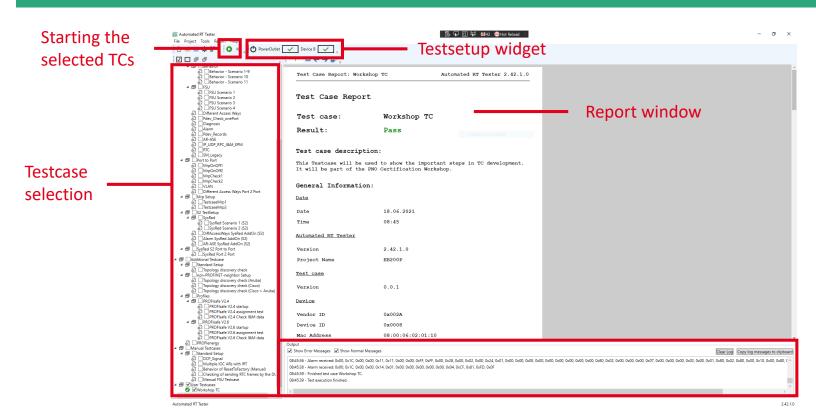


Agenda Part 1: Automated RT-Tester Basics

- 1 The Automated RT-Tester
- 2 PROFINET Device Certification
- 3 PROFINET Contoller Certification
- 4 PC System & Testsetups
- 5 Command Line Interface

- Conformance testing and certification for PROFINET Devices and Controllers
- Fully automated testing in terms of
 - Test execution/processing
 - Result validation
- Designed for
 - Certification in PITLs
 - In-house (pre-certification) testing
 - Development and regression testing

Testing with the Automated RT-Tester

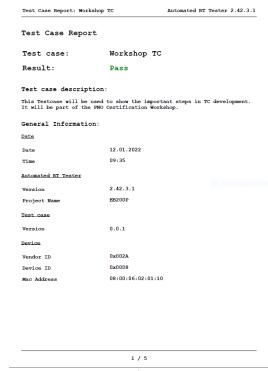


- Characteristics:
 - Easy handling
 - Max. test coverage and high coverage of PROFINET spec
 - Reliable and detailed results
 - Reproducibility
 - Full API access
- Developed at OTH Amberg-Weiden, WG AUT with support of aia – automations institute (PICC)
 - https://aut-oth.de/
 - https://aia-oth.de/

OTH Campus in Amberg

Output window

PI Certification Workshop 2022 PROFIBUS & PROFIBET International (PI)


- PROFINET functionality is tested in different testcases, each with its own focus, e.g.
 - DCP
 - AR handling
 - Alarm statemachines
 - System Redundancy
 - PROFIsafe, PROFIenergy
 - · ..
- Specified sequence of operations
- Published and thoroughly reviewed
- Coverage: >80% of PROFINET base spec

Testcases for Device certification

- Testcase reports
 - Each testcase produces a transparent report with a clear result
 - Pass
 - Fail
 - PassWithHint
 - Inconclusive
 - Skip
 - Detailed information and log regarding
 - DUT
 - Version of Automated RT-Tester and testcase
 - Testcase execution log
 - Hints and errors

Example report

Test Case Report: Workshop TC

Automated RT Tester 2.42.3.1

Test Case Report

Test case: Workshop TC

Result: Pass

Test case description:

This Testcase will be used to show the important steps in TC development. It will be part of the PNO Certification Workshop.

General Information:

Date

12.01.2022 Date 09:35 Time

Automated RT Tester

2.42.3.1 Version EB200P

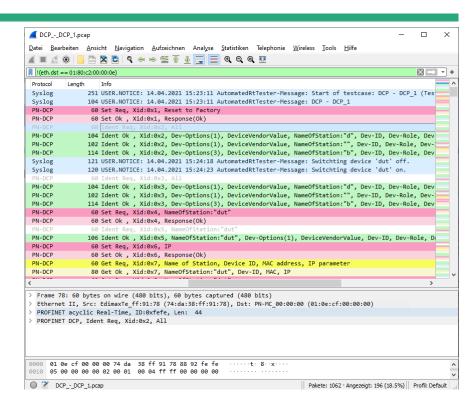
Project Name

Test case

Version 0.0.1

Device

0x002A Vendor ID


Device ID 0x0008

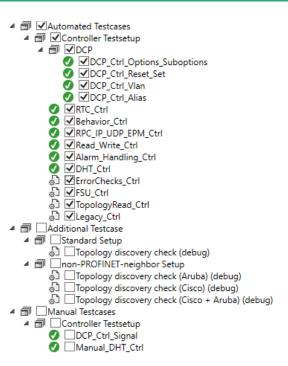
08:00:06:02:01:10 Mac Address

PCAPs

- Each testcase produces a PCAP file
- Dumps of all network traffic of the NICs connected with the test setup
- Injection of Syslogs for easy navigation and highlighting
- Detailed analysis
- Archiving
- Transparency

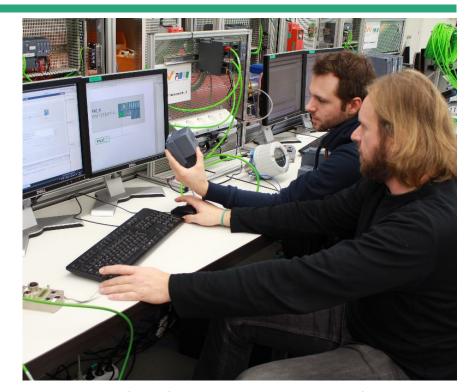
PCAP recorded with the ART

PROFINET Device Certification


- DUT is Device
- Automated RT-Tester simulates a PROFINET Controller
- GSD as base for PROFINET configuration
- Current status:
 - 40 main device testcases
 - Split into 64 single excecutable testcases

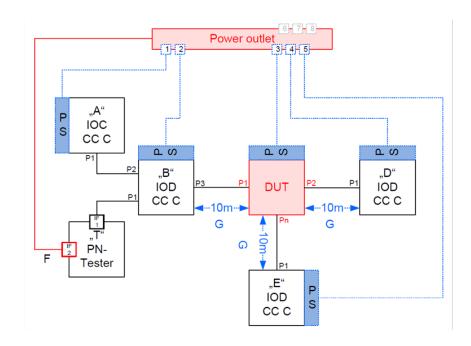
Testcases for Device Certification

PROFINET Controller Certification


Testcases for Controller Certification

- DUT is Controller
- Automated RT-Tester simulates a PROFINET Device
- TFPC (Test Flow Protocol for Controllers)
 for Device → Controller test commands
- Controller applications necessary (examples provided with every bundle)
- CDML (Controller Description ML)
- Current status:
 - 17 main controller testcases
 - Split into 21 single executable testcases

Hardware for testing – PC system


- Specified PC system with following requirements:
 - Windows 10[®] 64 Bit Professional, Version 20H2 (21H2 from next release on)
 - I350-T2/T4: 100BaseTX network card(s) with possibility to disable striping of VLAN-Tag for connection with the testsetup
 - Additional network card for connection with the power outlet
- Motivation: Reliable results and guaranteed reproducibility
- See test specification for full details

Test development at OTH Amberg

Hardware for testing – Testsetups

Standard testsetup

- Testsetups are specified in detail
 - PSU (Power Supply Unit)
 - Device B
 - Neighbor Devices
 - Cabling and ports
 - **...**
- Testsetups vary based on the testcases, e.g.
 - Standard Testsetup
 - S2 System Redundancy Testsetup
 - Port-to-Port Testsetup
 - ...

Hardware for testing – Testsetups

- Specified in test specification
 - Different testsetups
 - Dedicated testsetup for each testcase
 - Additional devices, e.g.
 - Converters for FO devices
 - Non-PROFINET-Neighbor devices for TedCheck

One of the PROFINET test stands at OTH

Standard Testsetup

Demo

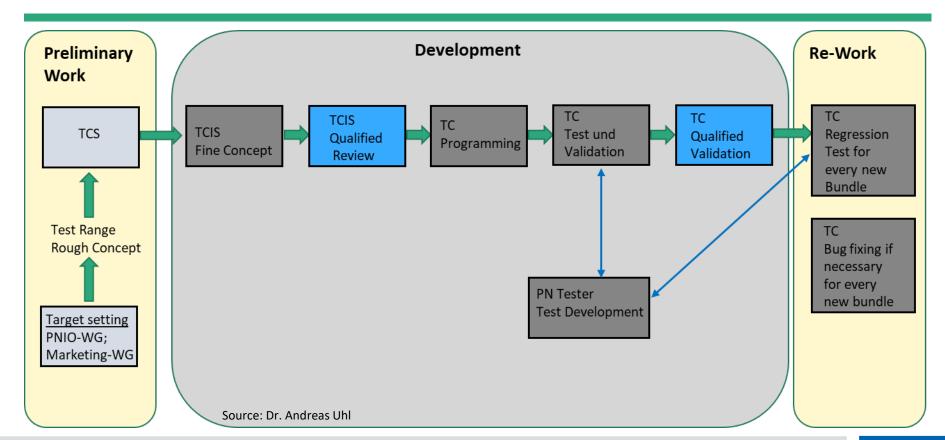
Command Line Interface

- Motivation:
 - CLI for further test automation
 - Regression testing
 - Automated comparison of test results
- AutomatedRTTesterCli.exe is provided with each installer of the ART
 - Default location: installation folder (C:\Program Files (x86)\Automated RT-Tester)
- Use:
 - Setup ART project
 - Pass path to project(s) as parameter

Using the CLI

End of part 1

Upcoming: What to expect from a testcase?



Agenda part 2: What to expect from a testcase?

- 1 Process
- 2 Resources (Testspec, TCS, TCIS, Code)
- 3 Testcase IP_UDP_RPC_EPM_I&M in detail
- 4 Writing your own testcases

Process

- Testspec
 - General test concept
 - Basics and coverage of scope of certification process
 - Information to provide to your PITL
 - Overview on all test systems (Automated RT-Tester, Spirta, Security Level 1, ...)
 - All testsetups
 - Devices with order numbers and settings (NameOfStation, IpParameters, ...)
 - Media converters
 - PSU
 - Cabling

- TCS Test Case Specification
 - Specific to a certain testcase
 - What to test? What to consider when testing?
 - General part:
 - Referenced versions of base specifications
 - GSD versions valid for certification testing (loading)
 - GSD attributes used in this testcase
 - Testsetup
 - Possible results with explanation
 - Testcase details:
 - Description of the testcase
 - Focus points for test development

- TCIS Test Case Implementation Specification
 - Specific to a certain testcase, based on the corresponding TCS
 - Exception: TCIS General containing details valid for all TCIS
 - e.g. AR-Establishment, AlarmHandling, DCP check / set NameOfStation / IpParameters, ...
 - How to test? Detailed explanation of the implementation
 - General part:
 - Additions to TCS, e.g. deviations
 - Implementation part:
 - Flow charts for all scenarios
 - Detailed description of every test step
 - Protocol tables for all tested PDUs

- Testcase code
 - Plain source code for all testcases is included in every installer of the Automated RT-Tester
 - Default location: C:\Program Files (x86)\Automated RT-Tester\Documentation\
 Testcases_NO_SUPPORT.zip
 - Better understanding of testcase
 - Hints and examples for development of user testcases

Scenario I: Checking of RPC, IP, UDP, Part 1

- 1. ICMP Ping request and validation of response
- 2. IOC-AR (little endian RPC)
 - 1. Check ModuleDiffBlock and IOPS (good)
 - 2. Read I&MO Data and validate response
- IOC-AR (big endian RPC)
 - Check ModuleDiffBlock and IOPS (good)
 - 2. Read I&M0 Data
 - 1. Validate response
 - Compare response to block received above
- 4. IOC-AR, ConnectRequest fragmented on RPC layer

Scenario I: Checking of RPC, IP, UDP, Part 2

- IOC-AR (with errors)
 - Record Data Read with:
 - Wrong checksum in IP part
 - Wrong checksum in UDP part
 - Wrong checksums in IP and UDP part
 - Data length in IP part is set too big
 - Data length in UDP part is set to the same value as in IP part
 - Data length in IP part is set too small
 - Data length in UDP part is set too small
 - None of those frames shall be forwarded to the DCE RPC layer
 - DCE RPC pings are used to ensure functionality of DCE RPC service

Scenario II: Consistency check of EPM, I&M and DCP

- NDR Endpoint Mapper Lookup Requests (rpc_c_ep_all_elts)
- 2. Read I&MOData of device representative
- Send DCP IdentifyAllReq
- 4. Compare for consistency:
 - Vendorld
 - DeviceVendorValue
 - OrderId
 - HardwareRevision
 - SoftwareRevisionPrefix
 - SoftwareRevision
 - **...**

Scenario III: I&M Write

- 1. IOC-AR
 - For all Submodules in I&MOFilterData.FilterDataSubmodules:
 - Read I&M0 Data
 - Write I&M0 Data and validate error code
 - Read I&M0 Data
 - For I&M1 4: If supported (I&M.IM Supported, GSD):
 - Write IM, validate success/error code
 - Read I&M5, validate success (if supported) or error code
 - Write I&M5 and validate error code
- Release IOC-AR
- Power cycle DUT

Scenario III: I&M Write

- 4. IOC-AR
 - Read I&O Data and compare to previously written data
 - If supported: ResetToFactory Mode 1, 4, 8 or 9
 - Read writable I&M Data, check if successfully reset to factory settings.
- Release IOC-AR

Scenario IV: Check of ActivityUUID

- IOC-AR, save RPCActivityUUID from ApplicationReadyReq
- Release IOC-AR
- IOC-AR, save RPCActivityUUID from ApplicationReadyReq
- 4. Release IOC-AR
- Compare ActivityUUIDs
 - Subsequent ActivityUUIDs shall not be equal
 - Last 6 bytes of AcitvityUUIDs shall match the MAC address of the device

User testcase development

- Users of the Automated RT-Tester can develop and run their own testcases
- Motivation:
 - Debugging of stack
 - Regression tests
 - Development of new features
 - **...**
- API of Automated RT-Tester framework is available
- CLI support
- Detailed description of setup is included in every installer.

```
namespace MyFirstTestCase
  public class ArtDemo : ITestcase
      private byte[] _currentData;
      private byte[] _currentOutput;
      private Boolean runTest;
       public void Start(RtTesterModuleBase rtTesterModuleBase, BackgroundWorker backgroundWorker)
           report - new TestcaseReport();
           currentData = new byte[1];
           currentOutput = new byte[1];
           report.Result = TestcaseResult.Pass;
                         n arConfig = new ArConfiguration()
              Ar - ArType.IoController,
              Startup = StartupType.Advanced,
          runTest = true;
           ArCommParameters arCommParas;
           ArProcessingLevel arProclvl = new ArProcessingLevel()
              Alarm = ProcessingLevel.Auto,
              Connect = ProcessingLevel.Auto,
```

Development of user testcases

Implementing the ITestcase interface

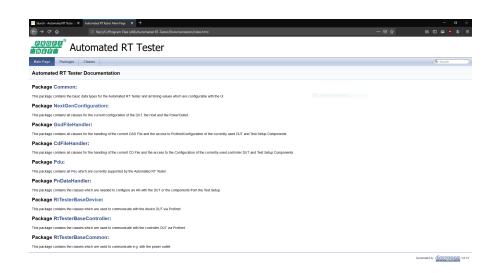
- Testcases have to implement the ITestcase interface
- Members:
 - Name: Name of the Testcase
 - Id: Id of the Testcase as shown in the report.
 - Category: Location in TC tree
 - TestSetup (Standard, P2P, SystemRedundancy, ...)
 - NeededDevices: Will be checked while TC preparation.

```
Mehr als 99 Verweise
public String Name { get; }
public String Category { get; }
public String Version { get; }
public String[] Description { get; }
public TestcaseReport Report { get; }
public UInt32 EstimatedExecutionTime { get; }
public List<TestSetupComponents> NeededDevices { get; }
public void Start(RtTesterModuleBase rtTesterModuleBase, BackgroundWorker backgroundWorker)
   throw new NotImplementedException();
```

Development of user testcases

Implementing the ITestcase interface

- Start()-Method
 - Will be executed on TC start
 - Holds or manages the TC logic
 - rtTesterModuleBase
 - Provides access to all data regarding configuration of DUT, network communication and PowerOutlet of the test setup
 - backgroundWorker
 - Cancellation of running TC by the user


```
Mehr als 99 Verweise
public String Name { get; }
public String Category { get; }
public String Version { get; }
public String[] Description { get; }
Mehr als 99 Verweise
public TestcaseReport Report { get; }
public UInt32 EstimatedExecutionTime { get; }
public List<TestSetupComponents> NeededDevices { get; }
public void Start(RtTesterModuleBase rtTesterModuleBase, BackgroundWorker backgroundWorker)
```

Development of user testcases

Docs and API

- Docs for developers:
 - The latest version of the documentation is always part of a bundle.

Documentation for developers

34

Possibilities of the ART-Framework

- MSF-Vathauer: SME with a broad product spectrum for frequency converters, drives etc. for automation.
 - Latest project: Frequency converters and soft-starter with PROFINET connection.
- Complete test tool for development, pre-certification and testing within assembly based on the Automated RT-Tester Framework.
- Complete independency from other software or IO-Controllers.

End of part 2

Upcoming: Live demo (structure and contents of the bundle, project setup, test execution)

Part 3: Live demo

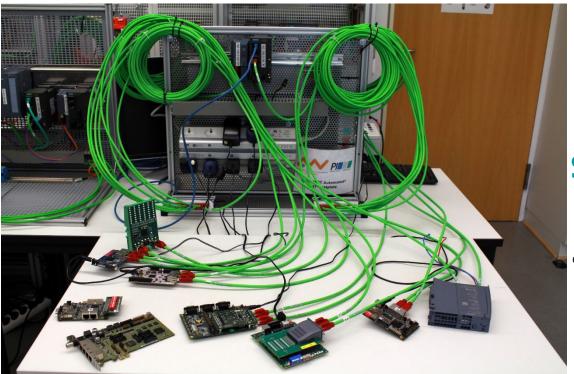
Structure and contents of the Test Bundle
Project Setup for Device & Controller Certification
Test execution

OTH Testbed: Guarantee of Quality

- 10 Standard Testsetups
- 5 Unified Testsetups
- More than 40 PROFINET Devices of a wide range of manufacturers
- PROFINET Controllers of major manufacturers

OTH Testbed

PI Certification Workshop 2022 PROFIBUS & PROFINET International (PI) 38



Close collaboration with manufacturers

SIEMENS

Ingenuity for life

Close collaboration with manufacturers

the sensor people

Department of Electrical Engineering, Media and Informatics

aia – automations institute GmbH

- aia automations institute GmbH is an affiliated institute at OTH Amberg-Weiden.
- Headquarters on the Technology
 Campus at the OTH Amberg-Weiden.
- Software solutions for small and medium-sized enterprises and industry in the field of automation.

aia offices at OTH campus in Amberg

Thank you!

Do you have any questions?

b.etzold@oth-aw.de | pn-ts-support@oth-aw.de

44

PI Certification Workshop 2022 PROFIBUS & PROFINET International (PI)